Long-Term Outcomes after Re-entry Device Use for Recanalization of Common Iliac Artery **Chronic Total Occlusions** Prio Hossain MPHa, Damianos G. Kokkinidis, MDb, Ryan Cotter, MDb, T. Raymond Foley, MDb, Bejan Alvandi BSa Gagan D. Singh, MDa, Stephen W. Waldo, MDb, John R. Laird, MDa, Ehrin J. Armstrong, MD MScb

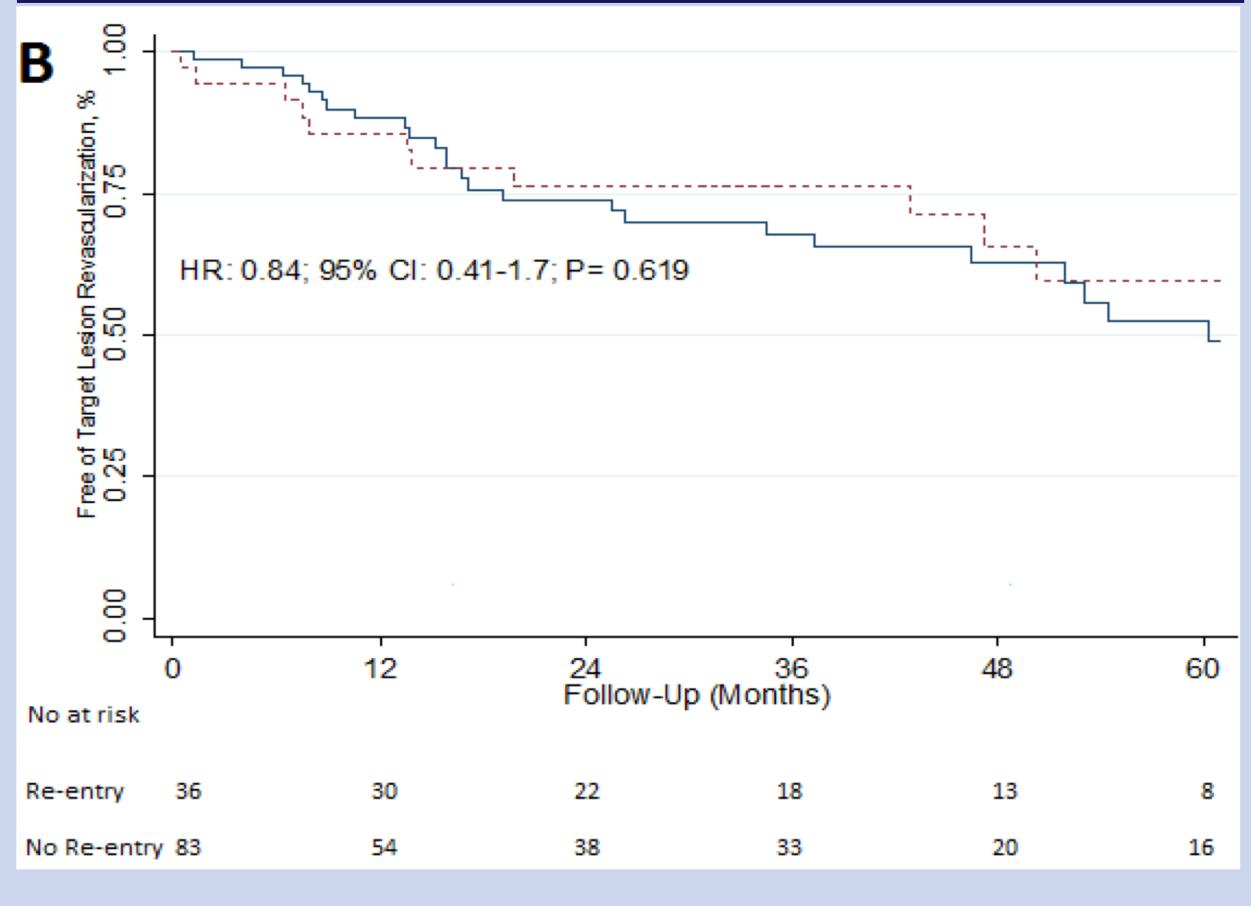
BACKGROUND

- Chronic total occlusions (CTOs) comprise up to 20-40% of lesions undergoing treatment for symptomatic peripheral artery disease (PAD).
- Subintimal angioplasty (SIA) is often used to facilitate CTO crossing. However, SIA leads to unpredictable wire reentry and is not always feasible.
- Re-entry devices (RED) are an alternative treatment option that can increase recanalization success rate and optimize the distal re-entry point while decreasing procedure and fluoroscopy times.

METHODS

- We performed a two-center retrospective study of 115 patients (140 lesions) undergoing CIA CTO endovascular intervention between 2006 and 2016.
- Cox proportional hazard model was developed to determine if RED use was associated with target lesion revascularization (TLR) or major adverse limb events (MALE) within five years.

RESULTS


- There were no significant differences in baseline demographics or other major comorbidities between the two groups (Table 1).
- RED use was safe and not associated with an increase in intraprocedural complications (Table 2).
- RED use had no statistically-significant association with changes in TLR (P = 0.619) and MALE (0.601) rates after five years (Figures 1 and 2).

a University of California, Davis Division of Cardiovascular Medicine and Vascular Center, Sacramento CA b Division of Cardiology, Denver VA Medical Center, University of Colorado, Denver, CO

Variables	Total (N=115)	No re-entry (N=75)	Re-entry (N=40)	P valu
Male, n (%)	80 (69.6)	52 (69.3)	28 (70)	1
Caucasian, n (%)	86 (74.8)	56 (74.7)	30 (75)	0.818
Stroke History, n (%)	14 (12.3)	8 (10.8)	6 (15)	0.557
MI history, n (%)	29 (28.2)	19 (27.1)	10 (30.3)	0.816
Diabetes, n (%)	32 (28.1)	21 (28.4)	11 (28)	0.655
Smoking, n (%)	107 (93.9)	71 (94.7)	36 (92.3)	0.689
Hypertension, n (%)	84 (73)	53 (70.7)	31 (77.5)	0.512
CAD, n (%)	47 (40.9)	29 (38.7)	18 (45)	0.554
Dyslipidemia, n (%)	87 (75.7)	56 (74.7)	31 (77.5)	0.822
CHF, n (%)	12 (10.4)	8 (10.7)	4 (10)	1
Age, mean (SD)	63.9 (10.1)	63.6 (9.4)	63.9 (10.9)	0.823
EGFR, mean (SD)	88.2 (33.6)	86.7 (30)	88.9 (39.2)	0.869
ABI, mean (SD)	0.58 (0.17)	0.57 (0.18)	0.6 (0.14)	0.194

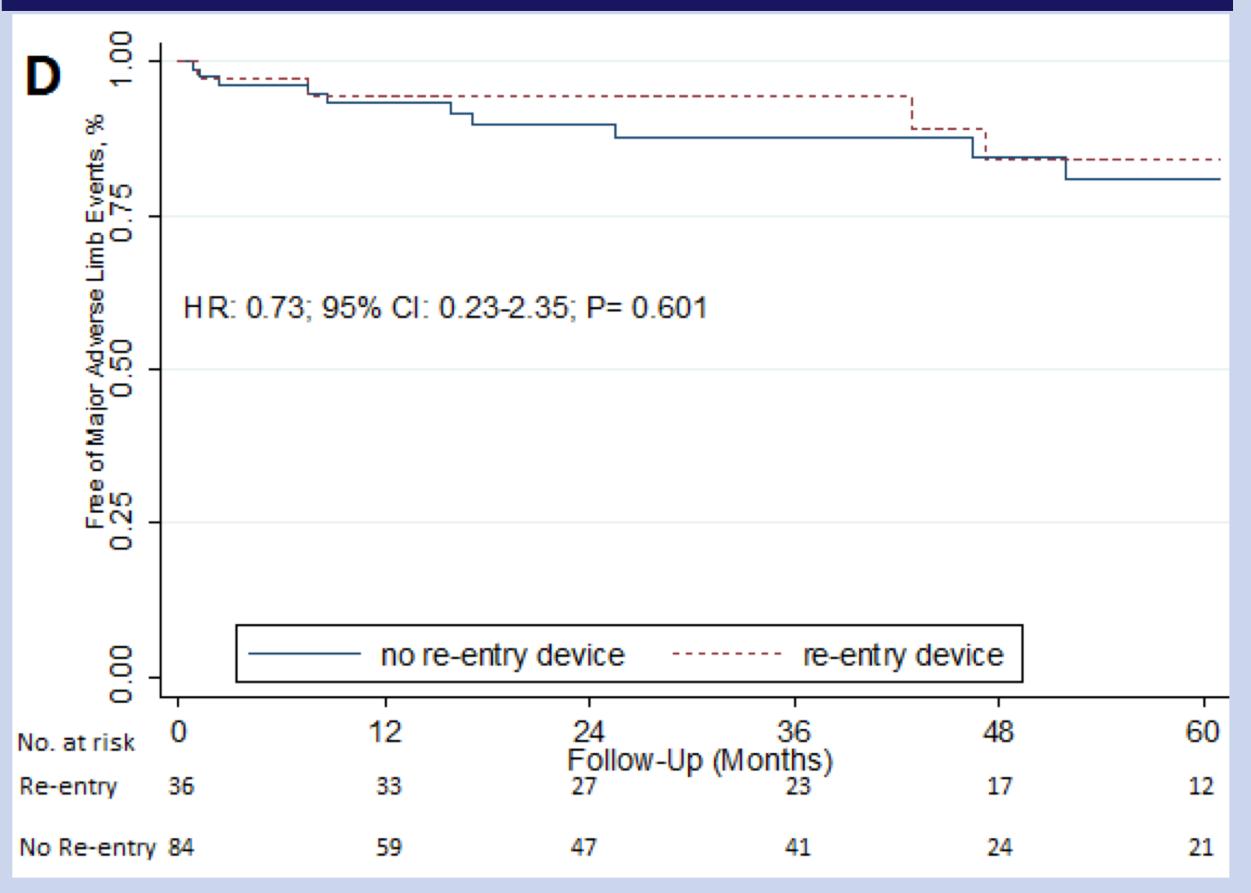

Figure 1. Five-Year Freedom from Target lesion Revascularization

Table 2. Angiographic and I	Procedural Characteristics
-----------------------------	----------------------------

Variables	Total	No re-entry	Re-entry	P value	
	(N=115)	(N=75)	(N=40)		
Anterograde Primary Approach, n (%)	29 (25.2)	21 (28)	8 (20)	0.378	
Primary approach successful, n (%)	89 (77.4)	62 (82.7)	27 (67.5)	0.1	
Anterograde Final Approach, n (%)	26 (22.6)	22 (29.3)	4 (10)	0.02	
Final approach successful, n (%)	104 (90.4)	70 (93.3)	34 (85)	0.187	
Approach change, n (%)	17 (14.8)	9 (12)	8 (20)	0.278	
Multivessel intervention, n (%)	99 (86.1)	65 (86.7)	34 (85)	0.785	
No/Mild Calcification, n (%)	40 (35.1)	29 (39.2)	11 (27.5)	0.226	
Moderate/Severe Calcification, n (%)	74 (64.9)	45 (60.8)	29 (72.5)		
Restenosis, n (%)	16 (13.9)	16 (21.3)	0	<0.001	
TASC A-B, n (%)	58 (50.4)	36 (48)	22 (55)	0.871	
TASC C-D, n (%)	55 (47.8)	37 (49.3)	18 (45)		
Target Lesion Stenting, n (%)	98 (85.2)	65 (86.7)	33 (82.5)	0.587	
TARGET LESION COMPLICATIONS, N (%)					
Perforation	3 (2.6)	3 (4)	0		
Dissection	3 (2.6)	1 (1.3)	2 (5)	0.249	
Embolization	3 (2.6)	3 (4)	0		
Procedural Success, n (%)	105 (91.3)	69 (92)	36 (90)	0.737	

Figure 2. Five-Year Freedom from Major **Adverse Limb Event**

Variables	Total (n=115)	No re-entry (75)	Re-entry (40)	P value			
Primary Patency	37 (67.3)	23 (69.7)	14 (63.6)				
Primary Assisted Patency	40 (72.7)	23 (69.7)	17 (77.3)	0.126			
Secondary Patency	46 (83.6)	28 (84.9)	18 (81.9)				
One year TLR	10 (8.9)	7 (9.6)	3 (7.5)	1			
Death	19 (16.5)	15 (20)	4 (10)	0.198			
МІ	3 (2.6)	3 (4.1)	0	0.551			
Stroke	4 (3.5)	3 (4.1)	1 (2.5)	1			
Target Limb Bypass	10 (10.6)	8 (12.1)	2 7.1	0.718			
Target Limb Loss	2 (1.8)	2 (2.7)	0	1			

Table 3. Outcomes

CONCLUSION

- Our findings indicate that RED does not increase intraprocedural complications or lead to worse long-term outcomes (TLR and MALE).
- Future studies in larger cohorts directly comparing RED vs. SIA treated cases without RED – may yield more definitive results.

DISCLOSURES

Dr. Laird is a consultant/advisory board member for Abbott Vascular, Bard Peripheral Vascular, Boston Scientific, Medtronic, WL Gore and receives research support from WL Gore, Medtronic, Bard Peripheral Vascular. Dr. Armstrong is a consultant to Abbott Vascular, Boston Scientific, Cardiovascular Systems Incorporated, Medtronic, and Spectranetics.